Abstract

The increasing quantity and sophistication of imaging spectroscopy applications have led to a higher demand on the quality of Earth observation data products. In particular, it is desired that data products be as consistent as possible (i.e., ideally uniform) in both spectral and spatial dimensions. Yet, data acquired from real (e.g., pushbroom) imaging spectrometers are adversely affected by various categories of artifacts and aberrations including as follows: singular and linear (e.g., bad pixels and missing lines), area (e.g., optical aberrations), and stability and degradation defects. Typically, the consumer of such data products is not aware of the magnitude of such inherent data uncertainties even as more uncertainty is introduced during higher level processing for any particular application. In this paper, it is shown that the impact of imaging spectrometry data product imperfections in currently available data products has an inherent uncertainty of 10%, even though worst case scenarios were excluded, state-of-the-art corrections were applied, and radiometric calibration uncertainties were excluded. Thereafter, it is demonstrated how this error can be reduced (<5%) with appropriate available technology (onboard, scene, and laboratory calibration) and assimilation procedures during the preprocessing of the data. As a result, more accurate, i.e., uniform, imaging spectrometry data can be delivered to the user community. Hence, the term uniformity of imaging spectrometry data products is defined for enabling the quantitative means to assess the quality of imaging spectrometry data. It is argued that such rigor is necessary for calculating the error propagation of respective higher level processing results and products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.