Abstract

Collaborative filtering recommends items based on similarity measures between users and/or items. The basic assumption behind the algorithm is that users with similar interests have common preferences. There are a lot of applications where websites collect data from their users and use that data to predict the likes and dislikes of their users. This allows them to recommend the content that they like. Recommender systems are a way of suggesting similar items and ideas to a user’s specific way of thinking

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.