Abstract

In this paper, we have investigated the effect of additional thin SiO2 layer on switching variability of SiN x -based resistive memory (RRAM). We found that excessive LRS state generated in set operation results in large reset current and abrupt reset operation. The abrupt reset operation leads to large distribution of HRS. To investigate the transient characteristics of switching procedure in detail, measurement environment was implemented with equivalent circuit, and measured current from equipment was separated into capacitive and resistive current of resistive memory cell. Consequently, we point the internal overshoot current occurring in set operation as the cause of the excessive leaky state leading to large resistance distributions. Finally, we confirm the effect of low resistance state value ( $R_{{\text{LRS}}}$ ) and cell capacitance ( $C_{{\text{DUT}}}$ ) on the internal overshoot current of RRAM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.