Abstract
A large number of room-temperature detectors have been produced from CdZnTe crystals grown with 10% Zn and 1.5% excess tellurium by the low-pressure, vertical-Bridgman technique. Radiation spectra obtained by these crystals using a 241Am source reveal the characteristic 59.5-keV line as well as the six low-energy peaks, which include the Cd and Te escape peaks. Similarly, 57Co spectra obtained also show a very well-defined 122-keV peak with a 3:1 peak-to-valley ratio. Seven CdZnTe crystals have been grown for reproducibility studies. Four of these crystals have resistivities over 1E9 Ω-cm. Considering that the indiumdoping level is on the order of 2E15 cm−3, the reproducibility is excellent. The theoretical basis of the high-resistivity phenomenon in CdZnTe is discussed in reference to a previous paper. The uniformity of these 6-in.-long CdZnTe crystals is studied, and various measurements are carried out, both laterally and vertically, along the boule. It is determined that, in general, roughly a 3.5-in. section near the middle of the 6-in. boule has sufficient resistivity for producing radiation detectors. This nonuniformity along the vertical direction is caused mostly by the composition change of Cd, Zn, Te, and In-doping level in the growth melt caused by differences in the segregation coefficients of these elements. Although, variations in resistivity are seen across some of the wafer slices, most show very good uniformity with high breakdown voltage. Some of the variations are attributed to the different grains within the boule. Similar results are seen in the measured radiation spectra obtain on 4 mm × 4 mm × 2 mm samples from different locations across the wafer, where some samples show well-resolved secondary peaks, while others display only the primary spectral lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.