Abstract

At present, for micro-textured tools, the determination of the micro-texture placement area depends on the derivation of the cutting geometric model. The micro-texture distribution form applies geometric methods, and the research methods and accuracy are limited. Therefore, in this paper, the ball-end milling cutter is taken as the research object. Based on fractal theory, the morphology of the tool before and after wear is compared to determine the tool–chip contact area. The uniform-density micro-texture distribution model is established using the uniform distribution point theorem, and the synergistic mechanism of the edge and the micro-texture is revealed. The strength of the micro-textured tool with uniform density under the action of the edge is studied by simulation. Finally, the determination of the tool–chip contact area and the establishment of a uniform-density micro-texture model is realized. It is proved that the synergistic effect of the cutting edge and the micro-texture has a positive effect on the milling behavior of the tool. When comparing the non-edge and non-texture tools with the cutting-edge tools, the maximum strain and stress of the cutting-edge micro-textured tools increased by 12% and 30%, and 30% and 20%, respectively, without affecting the normal use of the tool. This research provides a new method for the design of micro-textured tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call