Abstract

Resonance via Padé (RVP) is an efficient method for calculating autoionization resonance states. It is based on the stabilization technique in which the basis set is scaled. The scaling can be uniform (i.e., all basis functions are scaled) or partial. Herein, we compare the two RVP scaling schemes for calculating an autoionization eigenvalue; moreover, the effect of freezing the core electrons is intertwined within this comparison. In order to study the different behavior of the RVP schemes, we associate each RVP scaling scheme with a complex contour of integration. Similarities between RVP and other non-Hermitian methods emerge from the generated contours, which suggest that RVP introduces similar outgoing boundary conditions as the complex scaling (CS), complex basis function (CBF), and reflection-free complex absorbing potential (RF-CAP) methods. A uniform-RVP contour, unlike a partial one, immediately penetrates the complex plane and influences the interaction region. Hence, uniform scaling within RVP destroys the description of the core electrons, as well as the description of the reference state, and yields less reliable results than partial scaling. The 1s22p3s 1P autoionization state of Be, at the equation-of-motion coupled-cluster level, is used as our case study model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.