Abstract
We prove a "quantified" version of the Weyl-von Neumann theorem, more precisely, we estimate the ranks of approximants to compact operators appearing in the Voiculescu's theorem applied to commutative algebras. This allows considerable simplifications in uniform K-homology theory, namely it shows that one can represent all the uniform K-homology classes on a fixed Hilbert space with a fixed *-representation of C_0(X), for a large class of spaces X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.