Abstract

In the authors’ earlier work [1], a component length scale control functional was proposed to regulate the topology evolution with uniform thickness distribution; however, the sensitivity result was numerically calculated with certain approximation. In order to make this functional better work for complex design problems, the sensitivity result is now analytically calculated with the aid of the structural skeleton-based non-signed distance level set field. More importantly, this component length scale control functional has been upgraded to eliminate the need of pre-specifying the length scale target. By using control functional instead of constraints, a benefit is that the structural performance and length scale control effect can be balanced by the weight factor, because it is not always necessary to strictly achieve the uniform thickness distribution while drastically compromising the structural performance. Therefore, this work studies the uniform thickness control in a multi-objective manner. Effectiveness of the proposed method is proved through a few 2D and 3D numerical case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.