Abstract

Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is a powerful near-universal detection method finding application in many areas. We have previously coupled it with supersonic flows (CPUF) to obtain product branching in reaction and photodissociation. Because chirped-pulse microwave detection requires monitoring the free induction decay on the timescale of microseconds, it cannot be employed with good sensitivity at the high densities achieved in some uniform supersonic flows. For application to low-temperature kinetics studies, a truly uniform flow is required to obtain reliable rate measurements and enjoy all the advantages that CP-FTMW has to offer. To this end, we present a new setup that combines sampling of uniform supersonic flows using an airfoil-shaped sampling device with chirped-pulse mmW detection. Density and temperature variations in the airfoil-sampled uniform flow were revealed using time-dependent rotational spectroscopy of pyridine and vinyl cyanide photoproducts, highlighting the use of UV photodissociation as a sensitive diagnostic tool for uniform flows. The performance of the new airfoil-equipped CPUF rotational spectrometer was validated using kinetics measurements of the CN + C2H6 reaction at 50K with detection of the HCN product. Issues relating to product detection by rotational spectroscopy and airfoil sampling are discussed. We show that airfoil sampling enables direct measurements of low temperature reaction kinetics on a microsecond timescale, while rotational spectroscopic detection enables highly specific simultaneous detection of reactants and products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call