Abstract

In magnetic nanoparticles the uniform precession (q = 0 spin wave) mode gives the predominant contribution to the magnetic excitations. We have calculated the energy of the uniform mode in antiferromagnetic nanoparticles with uncompensated magnetic moments, using the coherent potential approximation. In the presence of uncompensated moments, an antiferromagnetic nanoparticle must be considered as a kind of a ferrimagnet. Two magnetic anisotropy terms are considered, a planar term confining the spins to the basal plane, and an axial term determining an easy axis in this plane. Excitation energies are calculated for various combinations of these two anisotropy terms, ranging from the simple uniaxial case to the planar case with a strong out-of-plane anisotropy. In the simple uniaxial case, the uncompensated moment has a large influence on the excitation energy, but in the planar case it is much less important. The calculations explain recent neutron scattering measurements on nanoparticles of antiferromagnetic α-Fe2O3 and NiO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call