Abstract

In this article we investigate the Uniform Spanning Forest ($\mathsf{USF}$) in the nearest-neighbour integer lattice $\mathbf{Z}^{d+1} = \mathbf{Z}\times \mathbf{Z}^d$ with an assignment of conductances that makes the underlying (Network) Random Walk ($\mathsf{NRW}$) drifted towards the right of the first coordinate. This assignment of conductances has exponential growth and decay; in particular, the measure of balls can be made arbitrarily close to zero or arbitrarily large. We establish upper and lower bounds for its Green's function. We show that in dimension $d = 1, 2$ the $\mathsf{USF}$ consists of a single tree while in $d \geq 3,$ there are infinitely many trees. We then show, by an intricate study of multiple $\mathsf{NRW}$s, that in every dimension the trees are one-ended; the technique for $d = 2$ is completely new, while the technique for $d \geq 3$ is a major makeover of the technique for the proof of the same result for the graph $\mathbf{Z}^d.$ We finally establish the probability that two or more vertices are $\mathsf{USF}$-connected and study the distance between different trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.