Abstract

A thin samarium (Sm) metal layer was introduced to improve the resistive hysteresis and switching uniformity. Sm reacts with the La0.7Ca0.3MnO3 and forms a thin interface oxide layer, which is responsible for the switching. The switching occurs without any forming process. Compared with conventional resistive memory device based on localized filament formation, Sm∕La0.7Ca0.3MnO3 devices show area-dependent resistance which indicates uniform resistive switching. Under a positive bias, electromigration of oxygen ions (O2−) forms thicker oxide (SmOx), which dissociates under a negative bias, causes high and low resistance states, respectively. Estimated data retention of more than 10yr was observed at 85°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call