Abstract
In the present paper, we study the uniform regularity and vanishing dissipation limit for the full compressible Navier–Stokes system whose viscosity and heat conductivity are allowed to vanish at different orders. The problem is studied in a three dimensional bounded domain with Navier-slip type boundary conditions. It is shown that there exists a unique strong solution to the full compressible Navier–Stokes system with the boundary conditions in a finite time interval which is independent of the viscosity and heat conductivity. The solution is uniformly bounded in \({W^{1,\infty}}\) and is a conormal Sobolev space. Based on such uniform estimates, we prove the convergence of the solutions of the full compressible Navier–Stokes to the corresponding solutions of the full compressible Euler system in \({L^\infty(0,T; L^2)}\), \({L^\infty(0,T; H^{1})}\) and \({L^\infty([0,T]\times\Omega)}\) with a rate of convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.