Abstract

In the context of rigid analytic spaces over a non-Archimedean valued field, a rigid subanalytic set is a Boolean combination of images of rigid analytic maps. We give an analytic quantifier elimination theorem for (complete) algebraically closed valued fields that is independent of the field; in particular, the analytic quantifier elimination is independent of the valued field’s characteristic, residue field and value group, in close analogy to the algebraic case. This provides uniformity results about rigid subanalytic sets. We obtain uniform versions of smooth stratification for subanalytic sets and the Łojasiewicz inequalities, as well as a unfiorm description of the closure of a rigid semianalytic set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.