Abstract
We show that the Lyapunov exponents of volume preserving C1 diffeomorphisms of a compact manifold are continuous at a given diffeomorphism if and only if the Oseledets splitting is either dominated or trivial. It follows that for a C1-residual subset of volume preserving diffeomorphisms the Oseledets splitting is either dominated or trivial.We obtain analogous results in the setting of symplectic diffeomorphisms, where the conclusion is actually stronger: dominated splitting is replaced by partial hyperbolicity. We also obtain versions of these results for continuous cocycles with values in some matrix groups.In the text we give the precise statements of these results and the ideas of the proofs. The complete proofs will appear in [4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.