Abstract

AbstractThis article contributes to the general program of extending techniques and ideas of effective algebra to computable metric space theory. It is well-known that relative computable categoricity (to be defined) of a computable algebraic structure is equivalent to having a c.e. Scott family with finitely many parameters (e.g., [1]). The first main result of the article extends this characterisation to computable Polish metric spaces. The second main result illustrates that just a slight change of the definitions will give us a new notion of categoricity unseen in the countable case (to be stated formally). The second result also shows that the characterisation of computably categorical closed subspaces of ${\Cal R}^n $ contained in [17] cannot be improved. The third main result extends the characterisation to not necessarily separable structures of cardinality κ using κ-computability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.