Abstract

We develop uniformly valid confidence regions for a regression coefficient in a high-dimensional sparse LAD (least absolute deviation or median) regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s « n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental LAD regression estimator that assembles the optimal estimating equation from either post l- penalised LAD regression or l1- penalised LAD regression. The estimating equation is immunised against non-regular estimation of nuisance part of the regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, under certain conditions, the instrumental LAD regression estimator of the regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. The new inference methods outperform the naive, 'oracle based' inference methods, which are known to be not uniformly valid- with coverage property failing to hold uniformly with respect the underlying model- even in the setting with p = 2. We also provide Monte-Carlo experiments which demonstrate that standard post-selection inference breaks down over large parts of the parameter space, and the proposed method does not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.