Abstract

<p style='text-indent:20px;'>We are concerned with the polynomial stability and the integrability of the energy for second order integro-differential equations in Hilbert spaces with positive definite kernels, where the memory can be oscillating or sign-varying or not locally absolutely continuous (without any control conditions on the derivative of the kernel). For this stability problem, tools from the theory of existing positive definite kernels can not be applied. In order to solve the problem, we introduce and study a new mathematical concept – <i>generalized positive definite kernel</i> (GPDK). With the help of GPDK and its properties, we obtain an efficient criterion of the polynomial stability for evolution equations with such a general but more complicated and useful memory. Moreover, in contrast to existing positive definite kernels, GPDK allows us to directly express the decay rate of the related kernel.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.