Abstract

Following the well-extablished mathematical approach to persistence and its developments contained in Rebelo et al. (Discrete Contin Dyn Syst Ser B 19(4):1155-1170. https://doi.org/10.3934/dcdsb.2014.19.1155, 2014) we give a rigorous theoretical explanation to the numerical results obtained in Bate and Hilker (J Theoret Biol 316:1-8. https://doi.org/10.3934/dcdsb.2014.19.1155, 2013) on a prey-predator Rosenzweig-MacArthur model with functional response of Holling type II, resulting in a cyclic system that is locally unstable, equipped with an infectious disease in the predator population. The proof relies on some repelling conditions that can be applied in an iterative way on a suitable decomposition of the boundary. A full stability analysis is developed, showing how the "invasion condition" for the disease is derived. Some in-depth conclusions and possible further investigations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.