Abstract

The purpose of this paper is to investigate uniform persistence for nonautonomous and random parabolic Kolmogorov systems via the skew-product semiflows approach. It is first shown that the uniform persistence of the skew-product semiflow associated with a nonautonomous (random) parabolic Kolmogorov system implies that of the system. Various sufficient conditions in terms of the so-called unsaturatedness and/or Lyapunov exponents for uniform persistence of the skew-product semiflows are then provided. Among others, it is shown that if the associated skew-product semiflow has a global attractor and its restriction to the boundary of the state space has a Morse decomposition which is unsaturated or whose external Lyapunov exponents are positive, then it is uniformly persistent. More specific conditions are discussed for uniform persistence in n-species, particularly 3-species, random competitive systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.