Abstract
The open question raised by Reich is studied in a Banach space with uniform normal structure, whose norm is uniformly Gateaux differentiable. Under more suitable assumptions imposed on an asymptotically nonexpansive mapping, an affirmative answer to Reich's open question is given. The results presented extend and improve Zhang Shisheng's recent ones in the following aspects: (i) Zhang's stronger condition that the sequence of iterative parameters converges to zero is removed; (ii) Zhang's stronger assumption that the asymptotically nonexpansive mapping has a fixed point is removed; (iii) Zhang's stronger condition that the sequence generated by the Banach Contraction Principle is strongly convergent is also removed. Moreover, these also extend and improve the corresponding ones obtained previously by several authors including Reich, Shioji, Takahashi, Ueda and Wittmann.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.