Abstract

We report systematic Cu-NMR studies on five-layered cuprates from under-doped HgBa2Ca4Cu5O12+δ (Hg-1245(UD)) to slightly overdoped Tl-1245(OVD), and compare with optimally-doped Hg-1245(OPT). In the under-doped Hg-1245(UD), antiferromagnetism (AFM) has been found to take place at TN=290K, exhibiting a large antiferromagnetic moment of 0.67–0.69μB at three inner planes (IP’s). These values are comparable to that reported for non-doped cuprates, suggesting that the IP’s may be in a nearly non-doped regime. Most surprisingly, the AFM order is also detected with MAFM(OP)=0.1μB even at two outer planes (OP’s) that are responsible for the onset of superconductivity (SC) with Tc=72K. The high-Tc SC at Tc=72K can uniformly coexist on a microscopic level with the AFM at OP’s. This is the first microscopic evidence for the uniformly mixed phase of AFM and SC on a single CuO2 plane. Although, the AFM/SC mixed CuO2 planes are significantly separated by three non-doped AFM layers, the onset of AFM does not prevent the occurrence of SC with the high value of Tc=72K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.