Abstract
In this paper we establish the uniform local-in-time existence and uniqueness of classical solutions to the density-dependent Navier-Stokes-Maxwell system. We then apply this uniform result to investigate the zero dielectric constant limit and the vanishing viscosity limit to Navier-Stokes-Maxwell system. We obtain the well-known density-dependent magnetohydrodynamic equations when the dielectric constant goes to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.