Abstract
The main results of this paper show that various coarse (‘large scale’) geometric properties are closely related. In particular, we show that property A implies the operator norm localisation property, and thus that norms of operators associated to a very large class of metric spaces can be effectively estimated. The main tool is a new property called uniform local amenability. This property is easy to negate, which we use to study some ‘bad’ spaces: specifically, expanders and graphs with large girth. We also generalise and reprove a theorem of Nowak relating amenability and asymptotic dimension in the quantitative setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Noncommutative Geometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.