Abstract
The dewetting of thin Pt films on different surfaces is investigated as a means to provide the patterning for the top-down fabrication of GaN nanowire ensembles. The transformation from a thin film to an ensemble of nanoislands upon annealing proceeds in good agreement with the void growth model. With increasing annealing duration, the size and shape uniformity of the nanoislands improves. This improvement speeds up for higher annealing temperature. After an optimum annealing duration, the size uniformity deteriorates due to the coalescence of neighboring islands. By changing the Pt film thickness, the nanoisland diameter and density can be quantitatively controlled in a way predicted by a simple thermodynamic model. We demonstrate the uniformity of the nanoisland ensembles for an area larger than 1 cm2. GaN nanowires are fabricated by a sequence of dry and wet etching steps, and these nanowires inherit the diameters and density of the Pt nanoisland ensemble used as a mask. Our study achieves advancements in size uniformity and range of obtainable diameters compared to previous works. This simple, economical, and scalable approach to the top-down fabrication of nanowires is useful for applications requiring large and uniform nanowire ensembles with controllable dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.