Abstract

This paper presents a uniform and modular method to prove uniform interpolation for several intermediate and intuitionistic modal logics. The proof-theoretic method uses sequent calculi that are extensions of the terminating sequent calculus G4ip for intuitionistic propositional logic. It is shown that whenever the rules in a calculus satisfy certain structural properties, the corresponding logic has uniform interpolation. It follows that the intuitionistic versions of K and KD (without the diamond operator) have uniform interpolation. It also follows that no intermediate or intuitionistic modal logic without uniform interpolation has a sequent calculus satisfying those structural properties, thereby establishing that except for the seven intermediate logics that have uniform interpolation, no intermediate logic has such a sequent calculus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.