Abstract

This paper is concerned with the uniform exponential stability of ordinary and delay dynamic equations. After revealing the equivalence between various types of uniform exponential stability definitions on time scales with bounded graininess, and demonstrating their relation when the graininess is arbitrary, we confine our attention to the uniform exponential stability of ordinary dynamic equations. We introduce and prove the Bohl–Perron criterion for delay dynamic equations: if for any bounded right-hand side, the solution of the delay dynamic equation with bounded coefficients and delays is bounded, then the trivial solution of the equation is uniformly exponentially stable. We also obtain some corollaries of this criterion. Based on these results, explicit exponential stability tests are derived for delay dynamic equations with nonnegative coefficients, which are illustrated with an example on a nonstandard time scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.