Abstract
We explicitly quantify the empirically observed phenomenon that estimation under a stochastic block model (SBM) is hard if the model contains classes that are similar. More precisely, we consider estimation of certain functionals of random graphs generated by a SBM. The SBM may or may not be sparse, and the number of classes may be fixed or grow with the number of vertices. Minimax lower and upper bounds of estimation along specific submodels are derived. The results are nonasymptotic and imply that uniform estimation of a single connectivity parameter is much slower than the expected asymptotic pointwise rate. Specifically, the uniform quadratic rate does not scale as the number of edges, but only as the number of vertices. The lower bounds are local around any possible SBM. An analogous result is derived for functionals of a class of smooth graphons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.