Abstract

AbstractWe propose a random batch method (RBM) for a contractive interacting particle system on a network, which can be formulated as a first‐order consensus model with heterogeneous intrinsic dynamics and convolution‐type consensus interactions. The RBM was proposed and analyzed recently in a series of work by the third author and his collaborators for a general interacting particle system with a conservative external force, with particle‐number independent error estimate established under suitable regularity assumptions on the external force and interacting kernel. Unlike the aforementioned original RBM, our consensus model has two competing dynamics, namely “dispersion” (generated by heterogeneous intrinsic dynamics) and “concentration” (generated by consensus forcing). In a close‐to‐consensus regime, we present a uniform error estimate for a modified RBM in which a random batch algorithm is also applied to the part of intrinsic dynamics, not only to the interaction terms. We prove that the obtained error depends on the batch size and the time step , uniformly in particle number and time, namely, ‐error is of . Thus the computational cost per time step is , where is the number of particles and one typically chooses , while the direct summation would cost . Our analytical error estimate is further verified by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.