Abstract

AbstractThe particle Gibbs sampler is a systematic way of using a particle filter within Markov chain Monte Carlo. This results in an off‐the‐shelf Markov kernel on the space of state trajectories, which can be used to simulate from the full joint smoothing distribution for a state space model in a Markov chain Monte Carlo scheme. We show that the particle Gibbs Markov kernel is uniformly ergodic under rather general assumptions, which we will carefully review and discuss. In particular, we provide an explicit rate of convergence, which reveals that (i) for fixed number of data points, the convergence rate can be made arbitrarily good by increasing the number of particles and (ii) under general mixing assumptions, the convergence rate can be kept constant by increasing the number of particles superlinearly with the number of observations. We illustrate the applicability of our result by studying in detail a common stochastic volatility model with a non‐compact state space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.