Abstract

A method for fabricating uniform double-walled microspheres with controllable size and shell thickness has been developed. The method, based on previous work to fabricate uniform microspheres, employs multiple concentric nozzles to produce a smooth coaxial jet comprising an annular shell and core material, which is acoustically excited to break up into uniform core–shell droplets. The orientation of the jets, material flow rates, and rate of solvent extraction are controlled to create uniform and well-centered “double-walled” microspheres exhibiting a controllable shell thickness. Double-walled microspheres were fabricated with different arrangements of bulk-eroding poly( d,l-lactide-co-glycolide) (PLG) and surface-eroding poly[(1,6-bis-carboxyphenoxy) hexane] (PCPH). Variation of the fabrication parameters allowed complete encapsulation by the shell phase, including the efficient formation of a PCPH shell encapsulating a PLG core. Utilizing this technology, double-walled microsphere shell thickness can be varied from <2 μm to tens of microns while maintaining complete and well-centered core encapsulation for double-walled microspheres near 50 μm in overall diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.