Abstract

Doping elements in hematite nanostructures is a promising approach to improve the photoelectrochemical (PEC) water-splitting performance of hematite photoanodes. However, uniform doping with precise control on doping amount and morphology is the major challenge for quantitatively investigating the PEC water-splitting enhancement. Here, we report on the design and synthesis of uniform titanium (Ti)-doped hematite nanorods with precise control of the Ti amount and morphology for highly effective PEC water splitting using an atomic layer deposition assisted solid-state diffusion method. We found that Ti doping promoted band bending and increased the carrier density as well as the surface state. Remarkably, these uniformly doped hematite nanorods exhibited high PEC performance with a pronounced photocurrent density of 2.28 mA/cm(2) at 1.23 V vs reversible hydrogen electrode (RHE) and 4.18 mA/cm(2) at 1.70 V vs RHE, respectively. Furthermore, as-prepared Ti-doping hematite nanorods performed excellent repeatability and durability; over 80% of the as-fabricated photoanodes reproduced the steady photocurrent density of 1.9-2.2 mA/cm(2) at 1.23 V vs RHE at least 3 h in a strong alkaline electrolyte solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.