Abstract

Abstract The higher-dimensional generalization of the weighted q-adic sum-of-digits functions sq,γ (n), n =0, 1, 2,..., covers several important cases of sequences investigated in the theory of uniformly distributed sequences, e.g., d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences. We prove a necessary and sufficient condition for the higher-dimensional weighted q-adic sum-of-digits functions to be uniformly distributed modulo one in terms of a trigonometric product. As applications of our condition we prove some upper estimates of the extreme discrepancies of such sequences, and that the existence of distribution function g(x)= x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits function sq,γ (n), n = 0, 1, 2,... We also prove the uniform distribution modulo one of related sequences h 1 sq, γ (n)+h 2 sq,γ (n +1), where h 1 and h 2 are integers such that h 1 + h 2 ≠ 0 and that the akin two-dimensional sequence sq,γ (n), sq,γ (n +1) cannot be uniformly distributed modulo one if q ≥ 3. The properties of the two-dimensional sequence sq,γ (n),s q,γ (n +1), n =0, 1, 2,..., will be instrumental in the proofs of the final section, where we show how the growth properties of the sequence of weights influence the distribution of values of the weighted sum-of-digits function which in turn imply a new property of the van der Corput sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.