Abstract

We investigate the hydrodynamic evolution of the system formed in ultrarelativistic heavy-ion collisions and find that an appropriate choice of the initial condition, specifically a simple two-dimensional Gaussian profile for the transverse energy, in conjunction with a realistic equation of state, leads to a uniform description of soft observables measured at the relativistic heavy-ion collider. In particular, the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown-Twiss correlation radii, including the ratio Rout/Rside as well as the dependence of the radii on the azimuthal angle, are all properly described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.