Abstract

VO2-decorated reduced graphene balls were prepared by a one-pot spray-pyrolysis process from a colloidal spray solution of well-dispersed graphene oxide and ammonium vanadate. The graphene-VO2 composite powders prepared directly by spray pyrolysis had poor electrochemical properties. Therefore, the graphene-VO2 composite powders were transformed into a reduced graphene ball (RGB)-V2O5 (RGB) composite by post-treatment at 300 °C in an air atmosphere. The TEM and dot-mapping images showed a uniform distribution of V and C components, originating from V2O5 and graphene, consisting the composite. The graphene content of the RGB-V2O5 composite, measured by thermogravimetric analysis, was approximately 5 wt %. The initial discharge and charge capacities of RGB-V2O5 composite were 282 and 280 mA h g(-1), respectively, and the corresponding Coulombic efficiency was approximately 100 %. On the other hand, the initial discharge and charge capacities of macroporous V2O5 powders were 205 and 221 mA h g(-1), respectively, and the corresponding Coulombic efficiency was approximately 93 %. The RGB-V2O5 composite showed a better rate performance than the macroporous V2O5 powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.