Abstract
One dimensional oscillatory integrals of the type $\int^\infty _0 \xi ^\alpha \rm\exp \big[it(p(\xi )-\xi x)\big]\rm {d}\xi $ are considered, where $p(\xi )$ is a real polynomial of degree $m\geq 3$. Long-time decay and global smoothing estimates are established, as well as short-time behavior as $t\to 0$. The results are applied to the fundamental solutions of a class of linearized Kadomtsev-Petviashvili equations with higher dispersion
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.