Abstract

A recent boson-fermion (BF) binary gas mixture model is extended to include: (i) anisotropy of the BF interaction and (ii) momentum-independent Coulomb repulsions. It is applied to account for the peculiarities of the pseudogap observed as function of absolute temperature T and concentration x of holes doped onto the CuO 2 planes and to study the further transformation of the pseudogap into the real superconducting gap, as T is lowered. Using two-time Green functions it is shown that pair breakings depend on the separation between the boson and fermion spectra of the BF mixture. As this separation shrinks, the pair-breaking ability of the Coulomb interaction weakens and disappears at the BEC Tc, i.e., at the T below which a complete softening of bosons occurs. Simultaneous inclusion of both effects (i) and (ii) produces, as T is lowered, "islands" in momentum space of incoherent Cooper pairs above the Fermi sea. These islands grow upon further cooling and merge together just before Tc is reached. The new extended BF model predicts a pseudogap phase in 2D high-Tc superconductors with lines of points, or loci, on the Fermi surface along which the pseudogap vanishes. This explains the origin of T-dependent "Fermi arcs" observed in ARPES experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call