Abstract

In an abstract framework, we study local convergence properties of Newton's method for a sequence of generalized equations which models a discretized variational inequality. We identify conditions under which the method is locally quadratically convergent, uniformly in the discretization. Moreover, we show that the distance between the Newton sequence for the continuous problem and the Newton sequence for the discretized problem is bounded by the norm of a residual. As an application, we present mesh-independence results for an optimal control problem with control constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.