Abstract
We analyzed TiO2 thin film growth on glass particles in a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor and numerically investigated the effects of several process variables on the film growth. An increase in titanium tetra-isopropoxide (TTIP) or O2 partial pressure can enhance the film growth rate on the particles because the concentration of TiO(x), which is the main precursor for thin film growth, becomes higher in the reactor. As the particle diameter decreases, the TiO(x) concentration increases and the thin film on the particles grows more quickly. The neutral-radical reaction between TTIP and O radicals for TiO(x) generation in TTIP + O2 plasmas can be important to enhance the thin film growth rate on the particles. The growth rate of TiO2 film predicted in this study was 1 approximately 20 nm/min, which is in good agreement with the published experimental results. This study suggests that a uniform TiO2 thin film on particles can be obtained by using a rotating cylindrical PCVD reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.