Abstract

Diamond was coated onto wire substrates of various transition metals (Mo, W or Ti) of 0.5 mm diameter by the microwave plasma CVD method from a gas mixture of the CO–H2 system. The CVD conditions for a uniform diamond coating were microwave power, 750–1100 W; total pressure, 2000 Pa; total flow rate, 200 ml min-1; CO concentration, 5 vol%; treatment time, 5 h. The wire substrates were mounted vertically or horizontally on a pyrophyllite susceptor, which was placed parallel to the irradiation direction of microwave power. Homogeneous and fine-grained diamond film was prepared on the whole surface of horizontal W wire substrate with a wire height of 2 mm from the susceptor. To obtain a dense diamond coating, the height has to be as low as possible in the plasma region, where the plasma density is higher at lower substrate temperature. Low pressure and high microwave power were suited for fine-grained coating. Diamond deposition rate was found to be more dependent on pressure than substrate temperature. As the pressure increased, a glassy carbon film was formed instead of diamond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.