Abstract

Abstract In this article we show that for every finite area hyperbolic surface X of type {(g,n)} and any harmonic Beltrami differential μ on X, then the magnitude of μ at any point of small injectivity radius is uniform bounded from above by the ratio of the Weil–Petersson norm of μ over the square root of the systole of X up to a uniform positive constant multiplication. We apply the uniform bound above to show that the Weil–Petersson Ricci curvature, restricted at any hyperbolic surface of short systole in the moduli space, is uniformly bounded from below by the negative reciprocal of the systole up to a uniform positive constant multiplication. As an application, we show that the average total Weil–Petersson scalar curvature over the moduli space is uniformly comparable to {-g} as the genus g goes to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.