Abstract
Using the energy estimate and Gagliardo–Nirenberg-type inequalities, the existence and uniform boundedness of global solutions for a strongly coupled reaction–diffusion system are proved. This system is the Shigesada–Kawasaki–Teramoto three-species cooperating model with self- and cross-population pressure. Meanwhile, some criteria on the global asymptotic stability of the positive equilibrium point for the model are also given by Lyapunov function. As a by-product, we proved that only constant steady states exist if the diffusion coefficients are large enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.