Abstract
In this paper, we first introduce the concept of a closed process in a Banach space, and we obtain the structure of a uniform attractor of the closed process by constructing a skew product-flow on the extended phase space. Then, the properties of the kernel section of closed process are investigated. Moreover, we prove the existence and structure of the uniform attractor for the reaction-diffusion equation with a dynamical boundary condition in L p without any restriction on the growth order of the nonlinear term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.