Abstract

We give an overview of basic methods that can be used for obtaining asymptotic expansions of integrals: Watson’s lemma, Laplace’s method, the saddle point method, and the method of stationary phase. Certain developments in the field of asymptotic analysis will be compared with De Bruijn’s book Asymptotic Methods in Analysis. The classical methods can be modified for obtaining expansions that hold uniformly with respect to additional parameters. We give an overview of examples in which special functions, such as the complementary error function, Airy functions, and Bessel functions, are used as approximations in uniform asymptotic expansions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.