Abstract

Our main result is a theorem that gives, in a certain setting, a necessary and sufficient condition under which discrete-space multidimensional shift-invariant input-output maps with vector-valued inputs drawn from a certain large set can be uniformly approximated arbitrarily well using a structure consisting of a linear preprocessing stage followed by a memoryless nonlinear network. Noncausal as well as causal maps are considered. Approximations for noncausal maps for which inputs and outputs are functions of more than one variable are of current interest in connection with, for example, image processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.