Abstract
We prove that every continuous mapping from a separable infinite-dimensional Hilbert space X into $\mathbb{R}^{m}$ can be uniformly approximated by C∞-smooth mappings with no critical points. This kind of result can be regarded as a sort of strong approximate version of the Morse-Sard theorem. Some consequences of the main theorem are as follows. Every two disjoint closed subsets of X can be separated by a one-codimensional smooth manifold that is a level set of a smooth function with no critical points. In particular, every closed set in X can be uniformly approximated by open sets whose boundaries are C∞-smooth one-codimensional submanifolds of X. Finally, since every Hilbert manifold is diffeomorphic to an open subset of the Hilbert space, all of these results still hold if one replaces the Hilbert space X with any smooth manifold M modeled on X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.