Abstract
[1] We provide a unified model for the soil-water retention function, including the effect of bound and capillary waters for all types of soils, including clayey media. The model combines a CEC-normalized isotherm describing the sorption of the bound water (and the filling of the trapped porosity) and the van Genuchten model to describe the capillary water sorption retention but ignore capillary condensation. For the CEC-normalized isotherm, we tested both the BET and Freundlich isotherms, and we found that the Freundlich is more suitable than the BET isotherm in fitting the data. It is also easier to combine the Freundlich isotherm with the van Genuchten model. The new model accounts for (1) the different types of clay minerals, (2) the different types of ions sorbed in the Stern layer and on the basal planes of 2:1 clays, and (3) the pore size distribution. The model is validated with different data sets, including mixtures of kaolinite and bentonite. The model parameters include two exponents (the pore size exponent of the van Genuchten model and the exponent of the Freundlich isotherm), the capillary entry pressure, and two critical water contents. The first critical water content is the water content at saturation (porosity), and the second is the maximum water content associated with adsorption forces, including the trapped nonbound water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.