Abstract

The variational principle of irreversible processes, which was previously presented for the von Neumann equation as a stationarity problem and then converted into a maximum problem by contracting the density matrix perturbatively, is reinvestigated w.r.t. the contraction of the density matrix. The present contraction relies on the T-matrix theory of scattering, where no perturbational consideration enters. By taking the electron transport in solids as a typical example, the contraction is performed in two steps: the even component of the density matrix as to time reversal is eliminated first and then the off-diagonal elements in the scheme of diagonalizing the unperturbed Hamiltonian. The maximum problem thus obtained is for the diagonal elements of the odd component of the density matrix. The maximum condition gives the master equation, which is reduced to the Boltzmann-Bloch equation in the scheme of one-body picture. It is noticeable in this equation that the collision term is given in terms of the T-matrix in scattering theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.