Abstract
When slowly sheared, jammed packings respond elastically before yielding. This linear elastic regime becomes progressively narrower as the jamming transition point is approached, and rich nonlinear rheologies such as shear softening and hardening or melting emerge. However, the physical mechanism of these nonlinear rheologies remains elusive. To clarify this, we numerically study jammed packings of athermal frictionless soft particles under quasistatic shear γ. We find the universal scaling behavior for the ratio of the shear stress σ and the pressure P, independent of the preparation protocol of the initial configurations. In particular, we reveal shear softening σ/P∼γ^{1/2} over an unprecedentedly wide range of strain up to the yielding point, which a simple scaling argument can rationalize.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.