Abstract
We derive general formulae for calculating the transport of free charge carriers in a MOS structure with a thin insulating layer. In particular, we obtain relationships for boundary concentrations of free charge carriers on the insulator–semiconductor interface and for the current densities flowing through the MOS structure. Our direct tunnelling-diffusion approach makes the well known thermionic emission–diffusion theory for the Schottky interface applicable also to metal–insulator–semiconductor barriers with a very thin insulator layer. We demonstrate how direct tunnelling through the insulating layer and drift–diffusion of free charge carriers in the semiconductor affect the I–V and C–V curves and the boundary concentrations needed to numerically solve the continuity equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.